CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene.

نویسندگان

  • M Nitta
  • S Ku
  • C Brown
  • A Y Okamoto
  • B Shan
چکیده

Cholesterol 7alpha-hydroxylase is the first and rate-limiting enzyme in a pathway through which cholesterol is metabolized to bile acids. The gene encoding cholesterol 7alpha-hydroxylase, CYP7A, is expressed exclusively in the liver. Overexpression of CYP7A in hamsters results in a reduction of serum cholesterol levels, suggesting that the enzyme plays a central role in cholesterol homeostasis. Here, we report the identification of a hepatic-specific transcription factor that binds to the promoter of the human CYP7A gene. We designate this factor CPF, for CYP7A promoter binding factor. Mutation of the CPF binding site within the CYP7A promoter abolished hepatic-specific expression of the gene in transient transfection assays. A cDNA encoding CPF was cloned and identified as a human homolog of the Drosophila orphan nuclear receptor fushi tarazu F1 (Ftz-F1). Cotransfection of a CPF expression plasmid and a CYP7A reporter gene resulted in specific induction of CYP7A-directed transcription. These observations suggest that CPF is a key regulator of human CYP7A gene expression in the liver.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis.

Coordinated regulation of bile acid biosynthesis, the predominant pathway for hepatic cholesterol catabolism, is mediated by few key nuclear receptors including the orphan receptors liver receptor homolog 1 (LRH-1), hepatocyte nuclear factor 4alpha (HNF4alpha), small heterodimer partner (SHP), and the bile acid receptor FXR (farnesoid X receptor). Activation of FXR initiates a feedback regulato...

متن کامل

Bile acid regulation of gene expression: roles of nuclear hormone receptors.

Bile acids derived from cholesterol and oxysterols derived from cholesterol and bile acid synthesis pathways are signaling molecules that regulate cholesterol homeostasis in mammals. Many nuclear receptors play pivotal roles in the regulation of bile acid and cholesterol metabolism. Bile acids activate the farnesoid X receptor (FXR) to inhibit transcription of the gene for cholesterol 7alpha-hy...

متن کامل

Transcriptional induction of cholesterol 7alpha-hydroxylase by dexamethasone in L35 hepatoma cells requires sulfhydryl reducing agents.

It is known that hepatic levels of reduced glutathione correlate with the activity of the liver-specific enzyme cholesterol-7alpha-hydroxylase. We examined the possibility that sulfhydryl reducing agents activate transcription of cholesterol 7alpha-hydroxylase. Adding dithiothreitol (DTT, 1 mM) and dexamethasone to L35 hepatoma cells increased the content of 7alpha-hydroxylase mRNA 3-fold above...

متن کامل

Removal of the bile acid pool upregulates cholesterol 7alpha-hydroxylase by deactivating FXR in rabbits.

We investigated the role of the orphan nuclear receptor farnesoid X receptor (FXR) in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1), using an in vivo rabbit model, in which the bile acid pool, which includes high affinity ligands for FXR, was eliminated. After 7 days of bile drainage, the enterohepatic bile acid pool, in both New Zealand White and Watanabe heritable hyperlipidemic r...

متن کامل

Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis.

Liver receptor homolog 1 (LRH-1), an orphan nuclear receptor, is highly expressed in liver and intestine, where it is implicated in the regulation of cholesterol, bile acid, and steroid hormone homeostasis. Among the proposed LRH-1 target genes in liver are those encoding cholesterol 7alpha-hydroxylase (CYP7A1) and sterol 12alpha-hydroxylase (CYP8B1), which catalyze key steps in bile acid synth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 12  شماره 

صفحات  -

تاریخ انتشار 1999